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CLASSIFICATION O F  LUNAR SATELLITE ORBITS 

Theodore L. Felsentreger 

SUMMARY 

A classification is presented of lunar satellite orbits perturbed by the earth 
and by the non-sphericity of the lunar gravitational field (the second zonal har- 
monic only). The orbits are arranged in three categories - those in which the 
argument of perilune circulates, those in which it "librates" about some odd 
multiple value of 77/2, and a class of "transition" orbits which belong to neither 
of the other two classes. 

The discussion is kept as general as  possible by holding the semi-major axis 
arbitrary. In addition, two examples are  presented to clarify the analysis. 
Graphs for these cases  show the permissible ranges of the two parameters in- 
volved (integrals of the satellite motion) for the orbit classes. 



CLASSIFICATION OF LUNAR SATELLITE ORBITS 

- 

INTRODUCTION 

Several studies have been made of the long-term effects on artificial satel- 
lite orbits disturbed by a third body (references 1, 2, 3 and 4). In addition, 
Lidov (4) has extended the analysis to include effects caused by the non-sphericity 
of the gravitational field of the central body (the second zonal harmonic only), in 
the particular case when the inclination of the disturbing body's orbit plane to 
the equatorial plane of the central body i s  90'. However, this simplification is 
not applicable when the central body is the moon, the angle in question being 
about 6O41'. 

The orbital motion of an artificial lunar satellite has already been studied 
by several people, among whom are  Kozai (5) and Giacaglia, et al. (6). However, 
adequate analytical representations for the long-period and secular effects 
caused by the earth have proved particularly troublesome to obtain - for in- 
stance, these two papers present solutions involving elliptic integrals. Later 
solutions by Frost (7) and Fisher and Felsentreger (8) (which do not involve 
elliptic integrals) depend upon whether the motion of the argument of perilune 
is circulatory (secular) o r  libratory (periodic). It was therefore deemed ap- 
propriate to define the regions of circulation and libration. 

The disturbing forces which will be considered here, then, give rise to 
long-period and secular effects caused by the earth and secular perturbations 
due to the second zonal harmonic of the lunar gravitational field. 

Orbits will be divided essentially into two classes - those in which the 
argument of perilune either circulates o r  librates. The discussion will be limited 
to a presentation of the ranges of permissible values for two parameters (integral 
constants), which of course depend upon initial conditions. Values of the param- 
eters for orbits which fall into neither category ("transition" orbits) lie on the 
boundaries of the ranges. 

A list of symbols appears in Appendix A. 
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EQUATIONS OF MOTION AND CONSTANTS OF THE MOTION 

The equations of motion for = and the argument of perilune g 
are (6) 

The two integral constants of the motion are readily found to be 

where 

In the case where the moon's second zonal harmonic J 
A = 0) , the parameters become the a and p of Lorell (1) , who has presented a 
classification of orbits disturbed only by a third body. However, the analysis 
is considerably more complicated when J 

is neglected (i.e., 

is not considered negligible. 

To begin the study, it will be assumed that for all orbits the argument of 
perilune must reach some odd multiple of n / 2 .  Therefore, the maximum c ,  a 
region compatible with elliptic orbits is that for which sin' g = 1 is allowable. 
If the argument of perilune is to circulate, then g must eventually become 0. 
Hence, the region in the c , a plane describing ffcirculatoryf' orbits is that 
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for which both sin2 g = 0 and sin2 g = 1 are allowable. The non-intersection 
of the two regions gives "libratorytf orbits. 

VALUES OF a AND c FOR WHICH SIN2 g = 1 

For s in2 g = 1, c can be rewritten as 

1 
c =  3q7 - ( 3  + Sa) '1' f 5 a q 3  - - A q 2  t A a  

2 v 5  
(3) 

which, for rl = 1 (Le., e = 0), describes the line 

1 
6 

c = - - A  (1 - 3 ~ ) .  (4) 

For a particular value of 7 , a achieves its greatest value when cos2 i = 1. Re- 
placing rl in Equation (3 )  by a, one obtains 

1 - A  
3 c x l - a t - ,  

,3/2 

which can be rewritten as 

3 
1 - l ) [ ( l + i A ) a 2  t ( l t kA )a3 /2  t - A a t - A a 1 l 2 t  3 3 - 
6 * (6) 

1 1 

c = - -A (1 -3a ) -  
a 3/2 

The last term in Equation (6) is always 5 0 ,  indicating that Equation (5) describes 
a curve in the c y  a plane to the right of the line c = -( 1/6) A( 1 - 3 a ) ,  and which 
asymptotically approaches the axis a = 0. Equations (4) and (5) intersect at 
a = 1, c = (1 /3 )A .  Therefore, the region to the right of the line of Equation (4) 
and bounded by Equation (5) and a = 0, gives permissible values of a and C . 

There remains the region to the left of the line to be explored. Equation - 1  
(3) can be rewritten . _  

( 2 c +  3)q3 - 3q5 + - A  
a =  3 .  1, 

5(q3 - q5) t A 
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holding c constant and taking the derivative with respect to q yields 

It is desirable to describe the roots of 

in order to determine possible maximum values of a .  

Now, a = 0 at q = 0. Since f (0 )  =(1/3)A2 > 0, a increases from 0 until q 
assumes the value of a root of f (q) . Suppose, for the moment, that ql is a root 
of f (q) . If it can be shown that a (1) 5 a (ql) , then one can conclude that a 
attains a maximum value either at q 1  or  at some other root of f (q) in O <  751. 

From Equation (9), then, 

Substitution of Equation (10) into Equation (7) yields ( f o r  q = ql) 

and, for q =  1, 

10 5 2 
3 3 3 

- 3 O q : ' t  60q: -- (9 -A) q; t 16Aq: - -A(8 - A ) $ - - A *  
* (12) a(1) = 

5 AT: ( 2 q ;  + A) L 
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Then, 

where 

g(r] , )  = 90(5 +A)  + 180(5 +A)  ?i2  +180Aqi'- 180 (5-A) r]io - 10 (45- 13A)~: 

-A(250 + 3A)r]:-2A(290+3A)r]: -A(290 +49A)r]: -92A2 r]: - 100A2?: 

The Theorem of Vincent and Descartes' Rule of Signs establishes that g ( 7 7 , )  
has no root in 0 < 7 ,  < 1 (see Appendix B). Since g (0) = - 2A3 <Oand g ( l ) =  
-15A (A2 t 20A + 24) < 0, one may conclude that 

for 0 < r ) ,  5 1; equality occurs only when r ]  , = 1. 

It must now be shown that u (.I,) 51 for any root rll of f(77). From Equa- 
tion (11) , 

Again, it can be shown that h(r] 1) has no root in 0 I r ] ,  L 1 (see Appendix B) . 
Since h(0) = -SA2 < 0, it has been established that ~ ( 7 , )  < 1 for any root T,  0 f f(7). 
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Finally, it must be demonstrated that, for  any value of c less than 
-(1/6)A (1-3a), f ( 7 7 )  has at least one root. From Equation (9), f (0) = (1/3) A2 > 0. 
Existence of a root between 0 and 1 is assured if f (1) < 0 - hence 

However, when c = A(4-A)/15 (2 +A), 77 = 1 is a root of f (q), and the point a =  
(6+A)/5(2+A),c = A(4-A)/15 (2 + A )  lies on the line c=-(1/6)A(1 - 3a) .  Thus, 
c < A(4 -A)/15 (2 + A)=> f(7) has at least one root q 1  in 0 < rll < 1 . In addi- 
tion, since a (1) < a (ql) f o q 1  # 1, the point c lies above the line c = 
-(1/6)A (1 - 3a). 

Hence, the curve whose parametric equations are (for 0 < rll 5 1) 

represents the upper boundary to the permissible c, n region lying to the left 
of the line c = -(1/6)A (1 - 3a). It intersects this line at the point c = 
A(4 -A) /15 (2 +A), a = (6  +A)/5(2 + A), and approaches the a = 0 axis asymptotically. 

VALUES OF a AND c FOR WHICH SIN2 g = 0 

For sin2 g = 0, Equation (2) becomes 

c =  9 

which, for 77 = 1, again becomes the line c = -(1/6)A (1 - 3a). In addition, for 
cos2i= 1, Equation (16) becomes 

1 - A  
3 c = 1 - a t-, 
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which describes the same curve as for sin' g = 1. Therefore, the permissible 
region to the right of c = -(1/6)A (1 - 3a) is the same as for  sin2 g = 1. 

Now, Equation (16) can be rewritten as 

A 6 

whose derivative with respect to  q (for constant c) is 

77' f 5 ( c  - l ) q 3  + - A .  
3 ' I  da 2 

Thus, an analysis of the roots of 

is in order. 

In ,  A \  Obviously, siiice F(il)=(l/a)wO, u iIicl-eases Irom a value of 0 at 77 = 0 
until a root of F (77)  is reached, assuring the existence of a relative maximum 
for a in 0 < q 5 1 (providing F (T) has a root). Hence, assuming q 1  to be a 
root of F (q) , it again behooves one to  show that a (1) 5 a (ql). 

When T = q 1  is a root of F (T) ,  Equation (19) gives 

1 
3 

- 7 7 ) ;  f 5?$ - - A  
c =  

5 4 
Equation (17) then becomes (for T = T ) 

4 
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for q = 1, 

- 4 2  q: t 5(6 t A)q; - 2 A  
a(1) = 

15 Aq; 

Then, 

where 

G (q1) has exactly one positive root. For A < 14, this root is in 0 < q l  < 1; for 
A = 14, the root is q l  = 1; and for A > 14, G ( T ~ )  has no roots in 0 < 
(see Appendix B). Therefore, a (1) - a (rl 1) I 0 for A 1 1 4 ;  for A < 14, designat- 
ing the root of G (ql) by q; , 

I 1 

where G* (ql) > 0. Thus, a (1) - u (ql) I 0 when q l  5 qr  - equality occurs (for 
A <14) o n l y w h e n q l = q r .  

The foregoing has also shown that the point c , a (q lies above the line 
c = -(1/6)A (1-34 when 0 < q l  < 1 (for A 2 14), and when 0 < q l  < 7; (for A < 14). 
For the two cases respectively, the points 

a r e  on the line. 
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A s  before, now, it must be shown that a (ql) 5 1 for any root q 1  of F(q). 
From Equation (21), 

But H (7,)has no root in 0 < T1 5 1 (see Appendix B). SinceH (0) = - 5 A  < 0, 
a ( ~ ~ )  < 1 for any root q 1  of F(7). 

Finally, inthe case where A 1 14, 

Also, F (0) = (1/3)A > O ,  so F ( T )  has at least one root in 0 < 7 I 1. The existence 
of at least one root of F (7) in the case where A < 14 will not be proved here - 
however, it can be proved after choosing a value of A < 14. 

To summarize, then, the curve whose parametric equations are  

represents the upper boundary (for sin2 g = 0) to the permissible C , a region 
lying to the left of the line c = -( 1/6)A (1 -3a).  When A L 14, the parameter .1 
may take on all values in 0 < q l  5 1. However, when A < 14, rl , is restricted to 
the range 0 < rl 5 .I; < 1, where is the root of G (ql) defined by Equation (24). 

Figure 1 depicts the c , a regions defined in the previous two sections. 
‘ 1 ;  
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Figure 1 

EXAMPLES 

The two cases to be presented here correspond to values for the semi- 
major axis of the satellite's orbit of 2 and 7.4822577 moon radii. Then, the 
values for A are 164.97081 and .22510948, respectively. For  the first case, 
Equations (4), (5), (15), and (25) become 

c = -  27.495135 (1 - 3a) 

54.990270 
a 3'2 c = l - a t  
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-157:' + 307; - 1 5 ~ :  + 1319.7665~:  -1099.8054-q: - 9071.7893 
_- c =  

(15') 
5 7 ;  (277; +- 164.97081) 

7 ;  (-307:' f 307; t 164.97081~:  f 824.854057; -t 27215.368) 
471) = 

5 [5(77; - 7:)  + 164.970811 ( 2 ~ ;  + 164.97081) 

7 ;  (-47: + 164.97081) 
824.85405 

c(7,)  = 
(0  < Tl 5 1) 

For  A = .22510948, the root of G (ql) is 7 7 ;  = .25110445; therefore, the equations 
defining the boundaries of the circulation and libration regions are 

- .037518247 (1 - 3a)  (4") 

.07 5036494 
,3 /2  

c = l - a t  (5") 

- 1 5 ~ : '  -t 307; - 1577: t 1.800875847: - 1.50072988 7; - .01689143 
c(71) = 

57: (277; + .22510948) 
(15") 

- 77: + 577: t .075036494 
C(7l )  = 

5r); 

7 :  ( -  47: + .22510948) 

1.1255474 
a =  

(25") 

251 10445). 
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Tables 1 , 2 ,  and3 (Appendix C) list values of c and a for points on the 
curves defined by the preceding equations. Figures 2, 3, 4, and 5 (Appendix D) 
show the circulation and libration regions for the two cases. It is readily ap- 
parent that the libration region for a = 2 % is considerably smaller than that 
for the case a = 7.4822577 R, - this is a consequence of the fact that the part 
of the disturbing function dependent upon J (which is purely secular) is more 
significant for smaller values of a .  

CONCLUSIONS 

Given a set of initial conditions for an artificial lunar satellite, it can be 
determined from a graph similar to Figure 1 whether the orbit falls into the 
circulation case or  libration case. If circulation, the method outlined by 
Frost  (7) can be used to compute the long-period and secular effects caused by 
the earth and the secular effects due to the moon's second zonal harmonic. On 
the other hand, if  the orbit is libratory, the method presented by Fisher and 
Felsentreger (8) may be employed. 
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APPENDIX A 

SYMBOLS 

a= semi-major axis of satellite's orbit 

e = eccentricity of satellite' s orbit 

i = inclination of satellite's orbital plane to moon's equatorial plane 

g= argument of perilune of satellite's orbit 

n=  mean motion of satellite 

t =  time 

R,= mean radius of moon r"- 1738 km. 

ac= semi-major axis of moon's orbi t2  221.17376 R, 

J 2= second zonal harmonic coefficient of moon' s gravitational potential 
"-2.41 x io4 

mass of moon 3r 1.0123 
mass of earth 

q =  1 + 

a2=  R: J 2 / a 2  

a ,  c = constants of the motion 
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APPENDIX B 

1. Proof that g(q,) has no root in 0 < q, < 1 

From Equation (14), 

g(ql) = 90  (5+A)q i3  + 1 8 0 ( 5 + A ) q i 2  +180Aq:1 -180(5.-A)q:o-10(45-13A)q~ 

-A(250 +3A)q;-2A(290+3A) qi -A(290 t49A)  q;-92A2 qf-100A2q: 

-A2(50 t 3A) q; - 6A3 7 ;  - 4A3q1 - 2A3, 

which, by Descartes' Rule of Signs, has either one positive root, or possibly 
three (in the case 45/13 < A < 5). Replacing ql by 1/1 + X (X > 0) transforms the 
equation into one having exactly the same number of positive roots as those of 
g (ql) in 0 < ql < 1. Thus, solving g ( q l )  = 0 for 0 < q1 < 1 is equivalent to 
solving the following equation for X > O  (the coefficients of X 1 3 ,  X 1 2 ,  . . . X5 are 
all obviously negative, so there is no need to write them down explicitly): 

o = a13 ~ 1 3  t a12 ~ ' 2  t all  XI' t alo x'O t a,-, x9 t a8 x8 t a7 x7 t as x6 + a5 x5 

-10(45 t 1997At  3136A2 +602A3)X4 -3(900 t 785OAt 7139A2 t 934A3)X3 

-5 (1080+3158At  1915A2 +177A3)X2-lO(360 t 5 1 6 A t 2 5 3 A 2  +17A3)X 

- 15A(24+20A+A2),  

where a 13 , a 12 , . . . , a 5  < 0. This equation obviously can have no positive 
solutions - hence, g (q1) has no roots in 0 < q l  < 1. 

2. Proof that h ( T ~ )  has no root in 0 L q l  5 1  
L 
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Since h (0) = -5 A2 < 0 and h(1) = - 4 A ( 1  + A )  < 0, it remains to be shown that 
h(q 1) has no roots in 0 < rll < 1. Equivalently, it must be shown that the trans- 
formed equation, after replacing q 
transformed equation is 

by 1/1 + X  (X> 0), has no positive roots. The 

0 = -SA2 X12 - 60A2 Xll - 329A2 X'O - SA(7 t 218A) - 4 5 A  (7 t 54A) X8 

- 3 0 A ( 4 1 +  128A) X7 - lO(5  + 2 7 3 A +  441A2) x6 - (300 f 3 7 7 9 A  t 3708A2) x5 

- 5 ( 1 4 0 t 6 7 1 A + 4 5 3 A 2 ) X 4  - 2 0 ( 4 0 + 9 4 A t 4 9 A 2 ) X 3  - 5 ( 8 4 t  1 2 4 A + 5 7 A 2 ) X 2  

-10(4 t 1 0 A +  5A2)X - 4 A ( 1  +A), 

which has no non-negative solutions. Consequently,h (7 1) has no roots in 
O I r l 1 5 1 .  

Finding the roots of G (ql) in 0 < rl1 5 1 is equivalent to finding the positive 
roots of 

b, X8 + b, X7 t b, X6 + 5(1-471\) X5 t 35(6 - l l A ) X 4  t 6(98 -67A)  X3 

where b,, b,, b, < 0 and q 1  = 1/1 + X .  Descartes' Rule of Signs establishes 
that the polynomial in  X has exactly one positive root for A I 14, and no positive 
roots when A > 14. Consequently, G (ql) has exactly one root in 0 < rll I 1 for 
A 5 14, and no roots in 0 < ql 5 1 whenA > 14. Since G ( 1 )  = 15 (14 -A ) ,  the root 
is 1 when A = 14, and is in 0 < rll < 1 when A < 14. 

A 

I 
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4. Proof that H ( q l )  has no root in 0 < Tl I1 

H ( l )  = - S A  < 0, S O  1 i s  not a root. 

Setting 7 = 1/1 + X , the polynomial set equal to zero is 

0 = -SAX7 - 35AX6 - 1 0 4 A X ’  - 1 7 0 A X 4  - 1 6 S A X 3  - 9 5 A X 2  - 3 0 A X - 4 ( 1  SA), 

which obviously has no positive roots. Therefore, H (ql) has no roots in 
0 < T l <  1. 
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APPENDIX C 

Table s 
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L 

.. 

a 

. 1  

.9409 

.8836 

.8281 

.7744 

.7225 

.6724 

.6241 

.5776 

.5329 

.4900 

.4489 

.4096 

.3721 

.3364 

.3025 

.2704 

.2401 

.2116 

.1849 

.1600 

.1369 

.1156 

,0961 

.0784 

- 

Table 1 

1 
T A  

C ,  a values f o r  c = 1 - a t- 
,3/2 

c (A = 164.97081) c (A = .22510948) 

54.990270 

60.310987 

66.323153 

73.144811 

80.918967 

89.819971 

100.061843 

111.909208 

125.619822 

141.824080 

160.831490 

183.3 86 990 

210.361630 

242.896060 

282.503110 

331.217530 

391.818790 

468.169490 

565.741440 

.07503649 

.14131618 

.20674184 

.2714745 5 

'.33570943 

.3 996 8440 

.46369149 

.52 8091 80 

.59333530 

.65998744 

.72876529 

.80058712 

.8 76 64 15 0 

,95848490 

1.0481 8 164 

1.14850822 

1.26325 735 

1.39769967 

1.55930176 

1.75887216 

2.0 1244520 

2.34448300 

2.79353121 

3.42266381 

4.33980761 
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Table 2 

ql c(A= 164.97081) a(A= 164.97081) c(A= .22510948) a(A= .22510948) - 

1 

.95 

.90 

.85 

.80 

.75 

.70 

.65 

.60 

.55 

.50 

.45 

.40 

.35 

.30 

.25 

.20 

- 10.60285 

- 12.58625 

- 14.99181 

- 17.95302 

- 21.65669 

- 26.36940 

- 32.48019 

- 40.57145 

- 51.54089 

- 66.82003 

- 88.78450 

- 121.56804 

- 172.78868 

- 257.51846 

- 408.39139 

- 704.97551 

-1375.89282 

I 

.20479126 

.18367060 

.16402945 

.145 74676 

.12872644 

.11289356 

.098190 74 

.08457501 

.07201504 

.Of3048873 

.04998109 

.04048246 

.03198710 

.02449195 

.01799570 

.01249808 

.00799932 

.02545983 

- ,00179364 

- .05465415 

- .12887024 

- .22039516 

- .32639709 

- .44028987 

- .56180739 

- .68716695 

- .81440876 

- .94307939 

-1.07559004 

-1.21995835 

-1.39568007 

- 1.64784077 

-2.0 870 8494 

-3.02826351 

.55953289 

.45293847 

.36267636 

.28707338 

.2 245 3 7 76 

.17250927 

.13267987 

.lo053275 

.07578677 

.05716197 

.043422 5 7 

.03340831 

.02596810 

.02022638 

.01545777 

.01126196 

.00753283 
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Tl 

1 

.95 

.90 

.85 

.80 

.75 

.70 

.65 

.60 

.55 

.50 

.45 

.40 

.35 

.30 

.25 

.20 

- 

Table 3 

-77: -t 5.i: - - A  1 
3 T; (-47: + A) , a =  c,  a v a l u e s  f o r  c = 

c (A =164.97081) 

- 11.39805 

- 13.09109 

- 15.22049 

- 17.91999 

- 21.37657 

- 25.85696 

- 31.75030 

- 39.63903 

- 50.42092 

- 65.52751 

- 87.33443 

- 119.97545 

- 171.06859 

- 255.68588 

- 406.46133 

- 702.96296 

-1373.81275 

a (A =164.97031) 

.195 15066 

.17711353 

.15968058 

.14294541 

.12698302 

.11185269 

.09760064 

.Of4426227 

.07186425 

.060426 17 

.04996211 

.04048188 

.03199205 

.024496 88 

. 0 17 99894 

.01249970 

.OO 7 9 9994 

- T l  

.25 110445 

.240 

.230 

.220 

.210 

.200 

.190 

.180 

.175 

.170 

.165 

.160 
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